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of the Calibration Domain
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Abstract: The Delaunay triangulation (DT) method for multivariate calibration is a

topological multivariate calibration method. In this paper, we present methods for

the definition of the calibration domain. Outliers in the calibration set must be found

and deleted and clusters detected. When clusters are found, it may be advantageous

to make separate local models. Two methods are proposed. The first, called the DT

calibration domain algorithm, is based on finding a kernel of samples that is then

extended according to local rules. An alternative is to first eliminate gross outliers

and then divide the data set in clusters, if such clusters exist, with Dbscan, a density-

based clustering method. The cluster(s) is (are) then used as kernels(s) and extended

with the same rules as the DT calibration domain algorithm to develop DT models

for each cluster. The two methods and some of the difficulties that can be encountered

with them are demonstrated with three simulated data sets and tested with three real

NIR data sets (one agricultural, one food, and one industrial). It is shown that the

methods perform well and are at least comparable in prediction performance to

partial least squares (PLS).
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INTRODUCTION

The Delaunay triangulation (DT) method for multivariate calibration[1] was

recently proposed as an alternative to principal component regression (PCR)

and partial least squares (PLS). It is a so-called topological method. Topolo-

gical methods determine the property value, such as the concentration of a

certain component or a physicochemical characteristic, of a new sample as

a weighted mean of this value for the neighboring samples. For simplicity,

we will call the property value concentration in what follows. Topological

methods are local methods, meaning that the concentration of a new sample

is determined by calibration samples that are close to it. Regression-based

methods such as PLS and PCR are global methods, in the sense that the

relationship between concentration and spectra is based on all samples of

the calibration set. Compared to PLS and PCR, there has been little

research published about topological methods for multivariate cali-

bration.[2 – 4] However some methods such as Topnir[3] have been applied

successfully in industry.

Delaunay triangulation was first developed in a very different context by

Delaunay and is used for instance in crystallographic and geographical appli-

cations.[5 – 7] It consists in creating a mesh or network of points, such that each

of them is part of a triangle (in two dimensions; see Fig. 1a), or the appropriate

simplex with Kþ 1 points (in K dimensions). The network is optimized such

that the circumsphere of any simplex contains no other points.

In the DT multivariate calibration method, a DT mesh is first obtained

with the calibration samples. A new sample, the concentration of which has

to be predicted, is then considered as a mixture of the calibration samples

that constitute the triangle or simplex that contains it. If the number of

variables is not too large, the DT mesh is constructed in the original data

space. Otherwise, for instance when the variables are spectra as is the case

in the applications we will describe, it is constructed in the PC-space. The

number of dimensions is first reduced by obtaining PC scores for the

calibration data and the scores are used as new variables.

The DT method for multivariate calibration was first presented in Ref. [1]

and it was shown to have good prediction properties for new samples. Several

expected advantages are discussed in the same reference. For instance,

because it is a local method, there should be less problems with nonlinearity.

However, as it is a new method, several aspects require further attention. One

of them is the proper definition of the calibration set. As in other multivariate

calibration methods, this consists of many samples, for which the concen-

tration has been determined. These samples are collected in such a way that

it can be hoped that all sources of variation, which could have an influence

on the relationship between concentration and spectrum, are represented.

These sources of variation are often not known, and therefore many

samples are collected in a way that ensures diversity (e.g., by taking

samples from different lots or origins).
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As in any other calibration method, the calibration set should not contain

outliers. Also, if there are clusters, which are relatively far from each other,

this can be a problem. For instance, the concentration of sample M in

Fig. 1b would be computed as a weighted average of samples A, B, and C,

Figure 1. (a) A DT mesh in two dimensions; (b) a DT mesh when two clusters exist;

M is a sample whose concentration must be predicted.
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although two of them are far away from M. The problem does not arise when

two clusters are close to each other. As we will explain later, it is possible to

predict the concentration of samples that are close enough to a DT mesh and,

when two clusters are close to each other, a sample that falls between the two

clusters will also be close enough to at least one of the clusters.

In the DT method for multivariate calibration, separate DT meshes are

made for each cluster. A local method is needed to detect for each cluster

of the calibration set, which samples are part of it and to avoid inclusion of

outliers and samples belonging to another cluster. We call this method the

DT-calibration domain method. An alternative method based on defining

clusters with a clustering method is also described.

THEORY

The DT Multivariate Calibration Method

The first step of the DT method is to construct a mesh of simplexes for the

calibration data with the Delaunay triangulation method. The DT triangulation

algorithm is described in Barber et al.[8]

Throughout the article, we will introduce the method in two dimensions,

which means that the simplex is a triangle. However, the method can easily be

generalized to higher dimensions. In Matlab 6.5, there is a function that allows

construction of the DT mesh in K-dimensional space.

In the DT method for multivariate calibration in two dimensions, the

following equations are used to obtain the coefficients of a new sample M,

which should be predicted, with respect to the k ¼ 3 neighbors (M1, M2,

M3) that surround it.

aM1
¼
ðx2M � x2M2

Þðx1M3
� x1M2

Þ þ ðx1M � x1M2
Þðx2M2

� x2M3
Þ

ðx2M1
� x2M2

Þðx1M3
� x1M2

Þ þ ðx1M1
� x1M2

Þðx2M2
� x2M3

Þ
ð1Þ

aM2
¼
ðx2M � x2M1

Þðx1M3
� x1M1

Þ þ ðx1M � x1M1
Þðx2M1

� x2M3
Þ

ðx2M2
� x2M1

Þðx1M3
� x1M1

Þ þ ðx1M2
� x1M1

Þðx2M1
� x2M3

Þ
ð2Þ

aM3
¼
ðx2M � x2M2

Þðx1M1
� x1M2

Þ þ ðx1M � x1M2
Þðx2M2

� x2M1
Þ

ðx2M3
� x2M2

Þðx1M1
� x1M2

Þ þ ðx1M3
� x1M2

Þðx2M2
� x2M1

Þ
ð3Þ

where x1i and x2i are the values of the two variables in the original x-space or

the scores of the objects in the PC-space depending on the situation, and aM1,

aM2, and aM3 are the contribution of samples M1, M2, and M3, respectively.

The sum of the coefficients is always 1:

aM1
þ aM2

þ aM3
¼ 1

For the new samples, the concentration of which has to be predicted and which

are found to be inside the mesh of the convex hull containing the calibration
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data set, the coefficient limits are in the range [0, 1]. When a new sample is

found to be outside the mesh, it is in principle still possible to predict its con-

centration. This can for instance be done by using the closest triangle(s). At

least one coefficient will then be negative. Because the sum of the coefficients

is 1, the coefficient limits must then be extended to values larger than 1. When

the new sample is far from the calibration data, the negative coefficient is large

and the limits will be extended to a large extent. An accurate prediction of the

sample is then not possible. Earlier work showed that the prediction remains

acceptable as long as the coefficients are in the range [21, 2]. Samples that

have at least one coefficient outside the range [0, 1], but for which the coeffi-

cients are within the range [21, 2] are outside the convex hull of the cali-

bration samples, but close to it. They are called marginal outliers and can

be predicted correctly. Objects that have at least one coefficient outside the

range [21, 2] are considered to be too far away from the calibration data.

We will call them true outliers.

The DT Calibration Domain Method

The DT method is a local method and a methodology for detection of samples

not belonging to the calibration domain should be based on local character-

istics. The algorithm we propose is based on two steps and is explained

here in two dimensions. The steps are shown in Fig. 2.

When spectra are used without prior feature selection, the PC scores of the

objects are used. They are obtained after column centering of the data.

Before starting with the algorithm, the data set is studied with a number of

diagnostic methods (see further) with the aim of detecting clear-cut clusters.

Although this is not necessary for the functioning of the method, gross

outliers can be removed at the same time. If clear-cut clusters exist, a

separate DT mesh will be obtained for each of the clusters that is considered

large enough. This also means that the DT calibration domain method is

applied to each cluster.

The first step of the algorithm consists of obtaining a kernel calibration

data set. This set consists of the samples close to the center of the majority

group in the calibration data. The “majority” group means that the group

contains more than half the number of samples, and 51% samples is usually

selected in the kernel set.

In the second step, the kernel calibration data set is extended with those

samples that are not too far removed from it and can therefore be considered

as compatible with the kernel set. The resulting data set is called the cleaned

calibration data set. The samples in the kernel set are considered as seeds to

obtain this data set. Calibration samples that are not part of the clean data set

are set apart. It may happen that (a majority of) the remaining samples can

form a second (or third,. . .) cluster that can be handled in the same way as
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the first cluster. With 51% samples selected in the kernel set first, a stable

subset for the cleaned calibration data set can be obtained in most cases.

The Kernel Calibration Data Set[9]

The kernel calibration set is defined as the set containing the 51% samples

closest to the center of the majority group.

The algorithm is initiated by randomly splitting the calibration set into

two subsets X1, the initial input of the kernel calibration data set, and X2,

the other objects. The number of initial objects in X1 is Kþ 1 (K is the

number of dimensions).

Figure 2. Steps of the DT calibration domain method. Xclean is the cleaned

calibration set.
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In a second step, the Mahalanobis distance (MD)[10,11] between each

sample and the center of the objects in X1 is calculated. The MD between

object M and the center is calculated by using the following equation:

MD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtM � tpÞC

�1
tp ðtM � tpÞ

0
q

ð4Þ

where Ctp ¼ [(Tp 2 t̄p)0 (Tp– t̄p)]/(r 2 1), tM (1 � K) is the score of sample M,

Tp (r � K) are the scores of the samples selected in X1, t̄p (1 � K) is the mean

column vector of Tp, and r and K are the number of samples in X1 and the

number of dimensions, respectively. When the number of variables of the

original data is not too large, the variables in the original x-space are used

instead of the scores for obtaining the MD values.

In a third step, the MD values of all samples are ranked. Fifty-one percent

of the objects that have the smallest MD values are selected and put into X1

and the rest is kept in X2. They constitute the first kernel.

The second and third step are repeated N times to optimize the kernel. The

51% objects with smallest MD values at that stage constitute the final kernel

calibration set (X1new). The other objects are put into X2new.

The structure of the algorithm is as follows:

Kþ 1 objects (X1) are selected randomly from the calibration set

for each iteration from 1 to N

for each object i

Calculate the MD of the object to the selected (new) X1

end

51% of the objects that have the smallest MD values are selected as

new X1

end

The 51% objects with smallest MD values are considered as the kernel

calibration set X1new. The others are put into X2new.

Extension of the Kernel Calibration Data Set

In order to extend the kernel set of the calibration data (X1new) with those

samples that are sufficiently close to it, a criterion (Cri) is needed. A DT

mesh is constructed with the data in X1new. To calculate the MD value of

a sample in X2new, the MD of the samples in X2new to each triangle in

the DT mesh is computed and the smallest is selected as the sample’s

MD value. The MD value between the vertices and the center of the

triangle, which contains the vertices, is a constant S. In two dimensions,

S ¼ 1.1547, and in higher dimensions S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2=ðKþ 1Þ

p
(where K is the

number of dimensions). Samples from X2new are considered close enough

and are transferred to X1new if their MD � Cri ¼ 2.5� S, yielding an

extended X1new.
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When all samples from X2new have been considered, the MD for the

objects remaining in X2new are considered again toward the extended

X1new and included if they satisfy the criterion. This is repeated until no

samples from X2new can be transferred X1new. In the process, the number

of samples in X1new is extended step by step and the number of samples in

X2new becomes smaller and smaller.

The remaining samples in X2new are considered not to belong to the

cluster investigated and therefore also not to the calibration domain. The

samples in X1new constitute the cleaned calibration data set (Xclean). It

includes a majority group of the samples investigated, as at least 51% of the

samples are included.

For the extension of the kernel calibration set, the structure of the

algorithm is as follows:

for each object in X2new

the MD of the object to the triangles constructed by the (extended)

kernel set is calculated and the minimal one is selected

end

if MD � Cri

the object is added to extend the kernel set and deleted from X2new

else

the object is remained in X2new

end

The previous steps are repeated until no object can be added to extend

the kernel set.

Prediction of the Concentration for New Samples

The cleaned calibration data Xclean is used as the calibration set to construct a

DT mesh. The concentration of new samples can be predicted adequately if the

sample is found to be within the convex hull of the data or a marginal outlier,

that is, when all a-coefficients are within the range [21, 2].

New samples with at least one coefficient outside the range [21, 2] are

considered true outliers toward the calibration set.

Diagnostic Methods

The proposed DT calibration domain method performs well in the presence of

outliers and minority clusters. However, as with any calibration method, it is

preferable not to work blindly and to investigate the data structure before

starting with the calibration. At this stage, gross outliers can be eliminated

and the clustering structure investigated. When the main cluster contains

less than half of all samples, the DT calibration domain method will not
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function properly. Although this can be corrected after the cleaned calibration

set has been obtained, it is preferable to look at this stage for the existence of

clear clusters. Therefore, a number of diagnostic methods are applied before

starting the DT calibration domain algorithm. Visualization methods and a

clustering method are used for that purpose. The first visualization method

to be used is of course PCA. PCA is directed toward finding the largest

variation in the data set. This is often caused by clustering, and in that case

the PCA may allow to observe the clustering. In some cases, however, it is

not apparent in the plots of the first PCs and may go undetected. Therefore,

it is complemented with methods that find directions in multivariate space

along which clusters are most evident and projects the samples on planes

determined by these directions. For this purpose, we use projection pursuit

(PP) with the Yenyukov projection index as criterion.[12,13]

Clustering is usually carried out with hierarchical or partitioning

methods.[14,15] They have the disadvantage for our application that they

always give a clustering, even when there is only one cluster, and that they

tend to select clusters of a given (e.g., round) form, depending on the

algorithm applied. Density-based approaches are much less known but do

not suffer from these disadvantages. The density-based approach used here

is the Dbscan method. It determines the number of clusters based on the

characteristics of the data and can detect clusters of any form. It is also able

to detect outliers, defined in this case as objects that are not close enough to

enough other objects.

The method was originally proposed by Ester et al.[16] and first applied to

chemical data by Daszykowski et al.[17] It is based on determining how many

objects are situated in a given neighborhood of a certain object. If there are

more than a certain minimum, that object is considered to be part of a

cluster with the objects in the neighborhood. To apply the method, it is

necessary to define two parameters: the minimal number of objects in the

neighborhood (Minpt) and the radius of the neighborhood (1). Minpt and 1

were defined as proposed in Daszykowski et al.[17] and Ankerst et al.[18].

Minpt ¼ integerðm=25Þ ð5Þ

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�Minpt� GðK=2þ 1Þ

m�
ffiffiffiffiffiffi
pK
p

K

s
ð6Þ

where m is the number of objects in the data set, K is the number of

dimensions, and G is the gamma-function. V denotes the volume of the

K-dimensional hypersphere, which is formed by the same number of

objects as the experimental data set in the same range but uniformly

distributed.

According to the determined Minpt and 1, objects situated in a region

with relatively high density can be detected to form cluster(s).
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An Alternative Approach for Determining the Calibration Domain

Based on the PC and projection pursuit plots, the analyst can try to define the

clusters himself and use these, or large parts of these, as kernels that can then

be extended to obtain the cleaned calibration set. However, as each plot is two-

dimensional, it would not always be easy to decide exactly which samples to

include and exclude. It is however possible to define clusters with Dbscan,

which is done in multivariate space. The cluster or clusters can function as

kernels, to which the extension step can then be applied.

EXPERIMENTAL

Three simulated and three real NIR data sets are used. The first real data set

(the meat data) contains the spectra of 198 meat samples recorded by Foss-

NIRSystems 5000 between 1300 and 2500 nm to determine the fat

content.[19] The second (the alfalfa data) consists of 305 samples of

forages[20] measured between 1108 and 2492 nm each 8 nm to determine the

protein content. The third data set (the hydrogen data) contains 239 samples

of gas oil measured between 4900 and 9000 cm21 (each 2 nm) to determine

the percentage of hydrogen.

The algorithms were programmed in Matlab version 6.5.

RESULTS AND DISCUSSION

Simulated Data Sets

To show how the DT-calibration domain algorithm works, three two-dimensional

simulated data sets are presented. Because the aim of this section is a

demonstration of the DT calibration domain algorithm, it is supposed that

no preliminary investigation of the data set took place. In practice, at least

some of the problems with the data would have been discovered and

remedied before applying the algorithm. At the same time, we will also

show how the alternative Dbscan-based methods works. In data set 1, the

data consist of one group. In data set 2, a minor group of objects is

somewhat removed from the majority group with different densities and it

contains an outlier that is expected to cause difficulties with the alternative

Dbscan-based approach. Data set 3 contains three equivalent clusters, and it

is expected that the DT calibration domain method will not give good results.

Simulated Data Set 1

Data set 1 contains 78 samples that are chosen from one group of real NIR

data: 60 for calibration and 18 for prediction (Fig. 3). Each sample is
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represented by a spectrum consisting of 174 wavelengths, and the first two PCs

of the samples are used. The kernel calibration data set (31 samples) is

obtained after 100 iterations. Then a Delaunay triangulation mesh is con-

structed by using the kernel calibration data set. For each of the remaining

29 samples, the MD values are calculated to the triangles of the DT, and

the smallest one is selected as the MD value of the samples. If the MD

value is smaller than Cri ¼ 2.5�1.1547, the point is included into the kernel

set. Twelve samples are included after the first iteration. This means that

there are now 43 samples in the extended kernel set (X1new) and 17

objects in X2new. Then a new DT is performed on the 43 samples. The

MD values of the objects in X2new are calculated again and the samples

with MD � 2.5�1.1547 are again included in X1new. This step is repeated

till no MD of the samples in X2new is smaller than Cri. All 60 samples in

the calibration set are part of the cleaned calibration set, and therefore no

samples are detected as outliers in the calibration set.

One large cluster and a small cluster of 7 on the lower left of the figure are

detected using the alternative Dbscan-based approach. The cluster is con-

sidered to be the kernel calibration data set. After extension of the cluster,

the other 7 samples are included so that all 60 objects are contained in the

cleaned calibration set. The DT and the Dbscan based alternative approach

agree therefore completely in this simple case.

Figure 3. Simulated data set 1, where † represents the calibration samples,

� represents the samples in the test set, and 4 is an outlier in the test set.

Multivariate Calibration with the DT Method 797

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
2
:
5
9
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



Of the new (prediction) samples, 14 are inside the DT mesh constructed

with the cleaned calibration set, and 3 of them are inside the marginal outlier

domain defined by the coefficient limits [21, 2], so that one outlier is detected

in the test set as shown in Fig. 3.

Simulated Data Set 2

Simulated data set 2 contains 460 two-dimensional samples in the calibration

set and consists of two clusters, a dense one of 400 samples that is drawn from

the bivariate normal distribution N2
0

0

� �
;

1 0

0 1

� �� �
and a less dense one of

59 samples that is drawn from the bivariate normal distribution

N2
0

5:5

� �
;

1 0

0 1

� �� �
. Moreover, there is one large outlier (Fig. 4). In the

DT calibration domain method, 235 samples are selected in the kernel cali-

bration set with 500 iterations. After the extension step, the cleaned calibration

set contains 394 samples. All 59 samples in the smaller cluster are recognized

Figure 4. Simulated data set 2. Sample A is the outlier that is expected to cause

difficulties for finding clusters in the data set; x represents samples in the cleaned

calibration set, and 4 represents samples that are not recognized as belonging to the

calibration set.
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as not being part of the calibration set. This is also the case for the large outlier

and six samples on the border of the large cluster.

This simulated data set was constructed to show a situation in which

Dbscan will not give the results wanted because Dbscan is sensitive to the par-

ameters Minpt and 1. The value of the latter is determined based on the

volume of the data space. When a large outlier is present, this increases the

volume artificially. The clusters are then difficult to detect. With the Dbscan

approach, only one cluster is detected, although there are two. When the

outlier is removed, Dbscan, correctly finds two clusters, the larger one contain-

ing 399 samples and the smaller one 59 samples. There is also one outlier from

the larger cluster.

After removal of the large outlier, Dbscan and the DT method find nearly

the same calibration set. A few samples are considered outliers in the DT

method and not in the Dbscan method. It should also be noted that in a case

like this, with two clusters that are not far from each other, the analyst

might decide to investigate with a test set if it is necessary to have two

local models or whether the results with one model would not be equally

acceptable.

In this case, it would be possible to create a second local model for the

smaller cluster.

Simulated Data Set 3

Data set 3 contains 150 two-dimensional samples. There are three equivalent

clusters that contain 60, 40, and 50 samples, respectively. The three clusters

are simulated from the bivariate normal distribution

N2
0

0

� �
;

1 0

0 1

� �� �
;N2

�5

7:5

� �
;

1 0

0 1

� �� �
; and N2

7

�2

� �
;

1 0

0 1

� �� �
,

respectively. This data set is expected not to give the results wanted with the

DT calibration domain method. In the DT calibration domain method, the first

step is to obtain 51% of all samples as kernel calibration set. When clusters

with equivalent size exist, the number of samples in each cluster is less than

51%, so that samples will come from at least two clusters. As shown in

Fig. 5, the kernel set (77 samples) contains indeed samples from two clusters.

The Dbscan approach does work because three clusters are detected. The

largest cluster contains 60 samples (cluster 1) and is considered to be the

kernel calibration set. No additional samples are added in the extension

step, and the cleaned calibration set contains 60 samples. A second local

model is then made with the second largest cluster and a third one with the

last cluster.

In this case, Dbscan and the DT method yield different results. The

Dbscan method warns the analyst that the solution obtained with the DT

method may not be (and in this case, is not) the right one.
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NIR Data Sets

The Meat Data

The set of 198 meat samples is split into two subsets by the Duplex method[21]:

150 in the calibration set and 48 in the test set. The PC1-PC2 plot is shown in

Fig. 6. No clustering is apparent in the calibration set.

Monte Carlo cross validation was applied to determine the optimal number

of PCs for the DT method. The root mean square error for cross-validation

(RMSECV) was computed and the minimal RMSECV was obtained when

five dimensions were used, so that the first five PCs are used as variables.

Because there are five dimensions, S is 2.0412. With this value, a kernel set

of 77 samples is selected with the DT calibration domain method and, after

optimization, extended using the rules described in the “Theory” section. One

sample is found to be an outlier; all other samples are incorporated into the

cleaned calibration set.

When the alternative method based on Dbscan is used, it is found that

there is one high-density cluster of 102 samples. The 48 other samples form

minor clusters or are outliers. However, they are quite close to the central

cluster. The 102 samples are considered to form the kernel, and after

extension the same 149 samples are gathered in the cleaned calibration set

as with the DT calibration domain method and the same outlier is found.

Figure 5. Simulated data set 3. Kernel calibration set for the DT-calibration domain

method; x represents the kernel calibration data.
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Of the 48 samples in the test set, 24 are inside the DT mesh and 24 are

marginal outliers. There is no true outlier in the test set. The RMSEP (root

mean square error for prediction) value for the 48 samples in the test set is

2.196 with the DT method and 3.181 with PLS. The DT method performs

markedly better than PLS.

The Alfalfa Data

This data set was split into two data sets by the providers of the data. It

contains 205 samples for calibration and 100 samples for prediction.

In order to select the number of PC factors needed to construct the DT

mesh, the leave-one-out cross-validation (LOOCV) method is used. The

minimal RMSECV was obtained for five dimensions, so that the first five

PCs are used as variables.

The PP plot with the entropy projection index as criterion[12,13] does not

pinpoint a gross outlier. The PCA plot (Fig. 7a) and the PP plot with the

Yenyukov projection index as criterion (Fig. 7b) show the existence of

three clusters close to each other. This is confirmed with Dbscan, as 3

clusters are detected (Fig. 7a).

The DT calibration domain method was used with S ¼ 2.0412. No

outliers are detected in the calibration set, and all 205 calibration samples

Figure 6. The meat data, PC1–PC2 plot; † represents the calibration samples, and

* represents the samples in the test set.
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are included in the cleaned calibration set. This means that no clusters are

recognized. Because the largest cluster contains less than 51% of all data, it

is expected that less than three clusters are found. When the alternative

Dbscan method is used, the largest cluster is chosen as the kernel calibration

Figure 7. The alfalfa data: (a) PC1–PC2 plot; (b) projection pursuit plot.
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set, thereby confirming the DT result. After extension, all calibration samples

are found to be contained in the cleaned calibration data set. This is not sur-

prising, as the three clusters are only a little further away from each other

than some of the samples on the borders of the clusters are from the other

samples of the same cluster. As explained in the introduction, there is then

no reason to make separate models for each cluster.

The calibration set is used to construct the DT domain, and 65 of the 100

samples of the test set are found to be inside it. The marginal outlier domain

with coefficient limits [21, 2] contains 34 samples, so that 1 outlier is detected

in the test set. The DT method yields an RMSEP of 1.18, whereas that of PLS

is 1.33. When the outlier in prediction is deleted also for PLS, as it was for the

DT method, the PLS value is 1.20 and therefore comparable to that for the DT

method. The large influence of this one sample on the PLS RMSEP indicates

that it is indeed a true outlier and shows that the DT method in prediction

recognizes such outliers.

The Hydrogen Data

The data set is split into two subsets by using the Duplex method. There are

190 samples for calibration and 49 samples in the test set. Figures 8a and

8b show the PC1–PC2 and PC2–PC3 plot of this data set, and Fig. 8c

shows the projection pursuit plot with the entropy projection index as

criterion. The calibration data seem to contain a majority group, at least one

smaller cluster and some large outliers.

Dbscan finds three clusters. Two of them are close to each other, a major

one of 158 samples and a minor one of 9 samples. There is also a much further

removed cluster of 18 samples and there are 5 outliers (see Fig. 8d).

Five dimensions are found to be the optimal complexity by using LOOCV

in the DT method, even after the elimination of the three larger outliers. After

applying the DT calibration domain method, 30 samples are found not to be

included in the calibration set, so that 160 samples constitute the cleaned cali-

bration set. It may be surprising to find some outliers in the majority group in

Figs. 8a–8c. This is due to the fact that the figures are shown in only two

dimensions, while in fact there are five.

The alternative Dbscan approach is also used for this data set. The

majority group contains 167 objects after extension and consists of the large

cluster and the minor one of 9 samples (Fig. 8d). It combines the two

clusters that were very close to each other.

Because many objects were discarded from the cleaned calibration set and

the dimensionality of a PC model is often increased by outliers or by the fact

that there is more than one group of samples, it is necessary to reevaluate the

dimensionality of the PC model for the cleaned calibration set. Therefore,

LOOCV is carried out again, and the complexity is now found to be 4.

There are 16 outliers in the test set when the calibration set of the DT
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calibration domain method is used and 11 when the one of the alternative

methods based on Dbscan is applied.

Because there is at least one more cluster, a second model is made, still

after deleting the three large outliers. Because the cleaned calibration set

obtained with Dbscan seems more appropriate than that obtained with the

DT calibration domain algorithm, the complete procedure is started all over

again for the 23 samples not included in the first cleaned calibration set

(i.e., starting with the construction of a DT mesh and a cross-validation to

determine the number of dimensions). The second cleaned calibration set is

found to consist of the 18 samples of the second cluster, and 3 dimensions

are needed. When each sample of the test set is now predicted with the DT

method, using the calibration set to which it is closest, 6 outliers are

detected in the test set. PLS is applied with a global model including the

two clusters. For both the DT and the PLS methods the three large outliers

in the calibration set were omitted. With the DT method, the RMSEP is

Figure 8. The hydrogen data: (a) PC1–PC2 plot; (b) PC2–PC3 plot; (c) projection

pursuit plot. 4 represents samples that are not recognized as belonging to the

calibration set. (d) Clusters and outliers detected with the Dbscan approach where 1 rep-

resents cluster 1, 2 represents cluster 2, and 3 represents cluster 3.4 represents samples

not belonging to any cluster.
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0.0587, with PLS it is 0.0631, when the six outliers are not predicted. It might

appear that DT is again better than PLS as for the alfalfa data, but when the 6

outliers are predicted, PLS outperforms in this case DT.

CONCLUSIONS

Two methods are proposed to determine the calibration domain for the

Delaunay triangulation method, a topological multivariate calibration

model. One of the methods is purely based on local characteristics and is

called the DT calibration domain. The other first applies a clustering with

Dbscan, a density-based clustering method. The two methods work well in

most situations, but in some situations such as simulated data sets 2 and 3,

one of the methods fails to find the cleaned calibration set, but the other does.

The Dbscan method is therefore complementary to the DT-outlier

method, and each has some advantages and disadvantages. A difficulty with

the DT calibration domain method is that it is not able to recognize whether

the samples that are excluded from the calibration set are isolated outliers

or belong to a cluster. In the latter case, one would like to know this to

create an additional local model. Using the Dbscan-based method solves

this problem. Dbscan has a tendency to find too small clusters in the initial

stage, but the extension algorithm corrects this.

The DT method compared to other multivariate outlier methods such as

PLS also has advantages and disadvantages. Apart from the advantages of

local methods compared to global methods such as avoiding problems with

nonlinearity, the study shows that the DT method has for instance a natural

way of finding outliers in the prediction stage, as shown with the alfalfa

data set. With PLS, additional diagnostics are needed to discover such

outliers. On the other hand, the hydrogen data set shows that at least in

some cases, PLS has a better chance of making an acceptable prediction of

the concentration of such outliers.

Some of the difficulties in the DT method with the real NIR data sets are

due to the fact that principal component scores are used instead of selected

wavelengths. When the latter are used, the selection of the proper number

of PCs is not needed, nor its reevaluation when a cleaned calibration set

contains many samples less than the original set. Therefore, feature

selection should be preferred when possible. A difficulty that was not

studied here, but which might occur in some applications when using PC

scores, is that the sample could be an outlier toward the PC model in the

sense that it has a large residual. It is possible that such a sample would fall

inside the calibration domain and that the large residual would go

unnoticed, thereby leading to wrong predictions of the sample in question.

How to cope with this will be the object of future research.

In general, we conclude that the potential of the DT method is confirmed

but that further research is needed, for instance to find the best way of updating
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the calibration set with new samples, to determine the effect of including more

samples than the simplexes in the prediction, and to determine the uncertainty

of the predicted concentration values. More applications and experience with

the method would also be useful and would allow it to be fine-tuned.
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